АДНАРО́ДНЫЯ КААРДЫНА́ТЫ пункта, прамой і г.д., каардынаты з уласцівасцю, што аб’ект, які яны вызначаюць, не мяняецца, калі ўсе каардынаты памножыць на адвольны лік.

Напр., аднародныя каардынаты пункта M на плоскасці могуць з’яўляцца лікі x, y, z, звязаныя суадносінамі x : y : z = x : y : 1 , дзе x і y — дэкартавы каардынаты пункта M. Лікі x′, y′, z′ будуць аднароднымі каардынатамі таго ж пункта M у выпадку, калі знойдзецца множнік λ, што x′=λx, y′=λy, z′=λz.

Увядзенне аднародных каардынат дазваляе дадаць да пунктаў эўклідавай плоскасці пункты з трэцяй аднароднай каардынатай, роўнай нулю (т.зв.бесканечна аддаленыя пункты), што істотна для праектыўнай геаметрыі.

т. 1, с. 123

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)